AB 32: The California Global Warming Solutions Act of 2006

Overview: AB 32 Implementation Status

What Is AB 32?

- Assembly Bill 32 sets in statute 2020 target
- ARB to monitor/regulate GHG sources
- Air Resources Board lead, but:
 - Cal/EPA and Climate Action Team continue coordinating statewide climate policy
 - Other agency authorities preserved

California GHG Emissions

Sectors

- Agriculture
- Forests
- Business/Industry
 - Cement
 - Semiconductor
 Manufacturing
 - Oil and Gas/Refining
 - General Combustion
- Energy
 (Electricity/Natural Gas)
- Water

- Transportation
 - Land Use/VMT
 - Vehicles
 - Fuels
- High GWP Gases
- Recycling and Waste Management
- State Gov't
 - Green buildings
 - State fleet

California GHG Emissions

2004 Emissions (480 MMT CO₂E)

(Cement Sector approximately 9% of Industrial emissions)

Magnitude of the Challenge

ARB 2020 Emission Reductions A Significant Fraction of the 2020 Target

(AT LEAST 72 of 173 MMTCO₂E)

- ☐ Adopted Strategies (AB 1493, Anti-Idling)
- Discrete Early Action Measures
- Other Early Actions
- Remaining Reductions (scoping plan, CAT)

Pathways to Reducing GHG Emissions

- Regulatory
 - Alternative Compliance Mechanisms
- Market-Based Mechanisms
 - -Cap & trade
 - -Offsets
- Other Alternative Mechanisms Incentives
 (e.g., voluntary actions, carbon fees,
 Incentives, etc.)

AB 32 Timeline

Scoping Plan Development

What Is the Scoping Plan?

- Describe how California will reduce GHG emission levels to 1990 levels by 2020
- Provide vision for low carbon future 2050+
- Establish California's leadership on addressing climate change
- Maximize benefits to California
 - Criteria and toxic air pollutant co-benefits
 - Economic development (green technologies)

How Will the Scoping Plan Be Developed?

- Identify maximum technologically feasible and cost-effective measures
- Assess possible mechanisms to achieve reductions
- Evaluate scenarios to achieve the 2020 limit
- ARB staff responsible for the Scoping Plan
 - ARB working closely with Cal/EPA and Climate Action Team Subgroups

Tentative Scoping Plan Development Schedule

Nov 30, 2007

Dec 6 & 7, 2007

Dec 14, 2007

Jan 16, 2008

May 5, 2008

June 26, 2008

July 2008

Oct 2008

Nov 20-21, 2008

✓ Scoping Plan Kick-Off Workshop

✓ Board Hearing - 1990 Baseline, Mandatory Reporting

✓ Sector Summary Workshop

✓ Mechanisms Workshop

Scoping Plan Scenarios Workshop (Sac)

Draft Scoping Plan released

Workshops on draft plan (Statewide)

Final Staff Proposal released

Board Hearing - Scoping Plan

Getting to 2050

- Scoping Plan must meet 2020 requirement
 - Also should address longer-term 2050 goal
- Scoping Plan measures should contribute to 2050 goal
- Some Scoping Plan strategies may have greater impacts after 2020

Contacts

- Bruce Tuter
 - -(916)324-5932
 - btuter@arb.ca.gov
- Climate Change website
 - www.arb.ca.gov/cc/cc.htm
- Program Design workshop
 - www.arb.ca.gov/cc/scopingplan/pgmdesignsp/meetings/2008_Meeting_Schedule.pdf

Industry Background and Overview

By Tom Pyle, P.E.

CAT Cement Sub-Group Leader

CAT relation with the Governor, Cal/EPA and ARB

What is the CAT thinking about?

- Where can we save GHG?
- How much will it cost?
- Is the cost a burden to the industry?
- Will strategies for GHG reduction cause inflation?
- What other benefits are there from the strategies?
- Can the market withstand the changes?
- What are the effects on the environment?
- Do the strategies require new technology?
- What are the effects on the quality of the cement and concrete?

California cement production

California cement production and imports

California cement production, imports and projections

Cement production GHG sources

- Main type:
 - Carbon dioxide(CO₂)
- Other types:
 - Methane (CH₄)
 - Nitrous oxide (N₂O)

What is GHG intensity factor?

- Ratio between the amount of GHG and the corresponding amount of cementitious materials (CM).
- Comprised of three main components:
 - Calcination
 - Fuel combustion
 - Shipping

Calcination

- Limestone is CaCO₃
- Chemical process
 - $-CaCO_3 + heat \rightarrow CaO + CO_2$
- Intensity
 - 1990: 0.52 tons of CO₂ per ton of CM*
 - 2005: 0.52 tons of CO₂ per ton of CM*

Note. CM=cementitious materials

Fuel combustion

- Fuel → energy → clinker
- Intensity
 - 1990: 0.40 tons of CO₂ per ton of CM*
 - 2005: 0.34 tons of CO₂ per ton of CM*

Note. CM=cementitious materials

Shipping

Concrete waste

5-8% returns

Concrete intensity report

GHG source	Tons	CO ₂ reduction
Concrete	3,500	
Cementitious	1,000	_
Cement	700	
Fly ash	200	<u>-</u>
Slag	100	-
Fly ash replacement	_	20%
Slag replacement	_	10%
Total replacement	_	30%

Cement intensity report

GHG source	Tons of CO ₂ per ton of cement	Intensity
Calcination	0.52	0.52
Fuel/energy	0.40	0.40
Limestone	0.00	-0.03
Fly ash / slag	0.00	-0.09

What WILL this sector do?

- Create an intensity
 - Cement
 - Concrete
- Allow for flexibility
- Look for incentives
- Create a reporting system

What WON'T this sector do?

- Prescribe mixes for applications
- Tell you how to make PCC
- Tell you what SCMs to use
- Tell you how to manage your business

- 11 cement plants in CA
 - > 3 in Northern CA
 - > 8 in Southern CA
 - Over 1,700 employees
 - > 14 cement kilns in CA

- Cement Plant Process
 - > 11.3 MMT Clinker
 - > 11.6 MMT Cement
 - Average limestone addition: 2.1%
 - 2 plants blend SCMs

- Equipment Used
 - > 9 plants have preheater/precalciner
 - Grinding (Raw and Finish):75% ball mills; 25% roller mills
 - Majority of plants have separators
 - > All plants have computer control rooms

- Operation and Maintenance
 - All plants have O&M plans
 - > All plants have kiln heat loss detection
 - Refractory bricks replaced annually
 - Kiln seal replaced 6 months to 2 years
 - Routine inspections and repairs

Cement Imports

- Over 40% cement is imported into CA
- Majority imported from China
 - > 60% vertical kilns in China
- 25% increase in CO₂ emissions from shipping

Concrete Batch Plants

- Over 400 500 established concrete batch plants in CA
- Many more temporary batch plants
- 75% of cement distributed to concrete batch plants
- 25% distributed to other businesses

Fuels

2006 Fuel Energy Output (statewide)

Fuels	Total Energy (%)
Coal	67
Petroleum Coke	20
Natural Gas	6
Tires	5
Residual Oil	2
Biomass	< 1

Cement CO₂ Emissions

- 2006 CO₂ Emission Calculations
 - > 2006 survey data
 - ARB emission factors and heat content values
- Statewide CO₂ Emissions
 - > Total CO₂ Emissions: 10.1 MMT
 - → Calcination: 5.8 MMT (57%)
 - → Fuels: 4.0 MMT (40%)
 - → Electricity: 0.3 MMT (3%)

Energy Intensities

- Statewide Energy Intensity Averages
 - Fuels (MBtu/ton clinker): 3.53
 - > Electricity (kWh/ton cement): 132

Statewide Average CIF:
 0.87 tonne CO₂/tonne cement

Cement and Concrete Strategies

By Tom Pyle, P.E.

CAT Cement Sub-Group Leader

What are our strategies?

- Cement:
 - Cement GHG intensity

- Concrete:
 - Concrete GHG intensity

Cement strategy

- Production efficiency improvement
- Environmentally friendly fuels
- Use of interground limestone
- Blend SCM at cement plants

Production efficiency improvement

Environmentally friendly fuels

Use of interground limestone

Blend SCM at cement plants

Concrete strategy

- Reduce concrete waste
- Use less cement
- Universal GHG emission standard
- Blend SCM at batch plants

Reduce concrete waste

Use less cement

Universal GHG emission standard

Blend SCM at batch plants

